小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.
如图,矩形花园ABCD,AB为4米,BC为6米,小鸟任意落下,则小鸟落在阴影区的概率是多少?
在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问 (1)在y轴上是否存在点M,满足? (2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.
已知,,,求证其为直角三角形.
如图,已知矩形ABCD中,,.将矩形ABCD沿对角线BD折起,使得面BCD⊥面ABD.现以D为原点,DB作为y轴的正方向,建立如图空间直角坐标系,此时点A恰好在xDy坐标平面内.试求A,C两点的坐标.
如图,长方体中,,,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,,,,E,F各点的坐标.