(本小题满分13分)已知数列的前项之和为(),且满足.(1)求证:数列是等比数列,并求数列的通项公式;(2)求证:.
已知函数. (Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间; (Ⅱ)若对于都有成立,试求的取值范围; (Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
判断命题“若且,则”是真命题还是假命题,并证明你的结论.
数列的前n项和记为,已知,. 证明:(1)数列是等比数列; (2).
已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R. (1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b); (2)判断(1)中命题的逆命题是否成立,并证明你的结论.