(本小题满分12分)如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,.(Ⅰ)若点是的中点,求证:平面; (Ⅱ)若点在线段上,且,当三棱锥的体积为时,求实数的值.
(本小题满分12分)已知椭圆的离心率为,定点,椭圆短轴的端点是,,且.(1)求椭圆的方程;(2)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.
(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且; (1)证明:无论取何值,总有; (2)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值; (3)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
(本小题满分12分)在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点.若l与圆x2+y2=1相切,求证:OP⊥OQ;
(本小题满分10分)如图,在直三棱柱中,、分别是、的中点,点在上,. 求证:(1)EF∥平面ABC; (2)平面平面.
已知函数的定义域为,对于任意的,都有,且当时,,若.(1)求证:为奇函数;(2)求证:是上的减函数;(3)求函数在区间上的值域.