(本小题满分12分)如图,四棱锥中,是正三角形,四边形是矩形,且平面平面,,.(Ⅰ)若点是的中点,求证:平面; (Ⅱ)若点在线段上,且,当三棱锥的体积为时,求实数的值.
如图,直线经过⊙上的点,并且⊙交直线于,,连接. (Ⅰ)求证:直线是⊙的切线; (Ⅱ)若⊙的半径为,求的长.
已知双曲线与椭圆有共同的焦点,点在双曲线C上. (1)求双曲线C的方程; (2)以P(1,2)为中点作双曲线C的一条弦AB,求弦AB所在直线的方程.
设函数. (Ⅰ)若,求的单调区间; (Ⅱ)若当时,,求的取值范围.
已知函数的图象过点(0,3),且在和上为增函数,在上为减函数. (1)求的解析式; (2)求在R上的极值.
对某校高中学生进行心理障碍测试得到如下的列联表:
将表格填写完整,试说明心理障碍与性别的关系? 假设检验中的临界值表: