如图,在四棱锥 P - A B C D 中,已知 P A ⊥ 平面 A B C D ,且四边形 A B C D 为直角梯形, ∠ A B C = ∠ B A D = π 2 , P A = A D = 2 , A B = B C = 1
(1)求平面 P A B 与平面 P C D 所成二面角的余弦值; (2)点 Q 是线段 B P 上的动点,当直线 C Q 与 D P 所成角最小时,求线段 B Q 的长
某人在一山坡P处观看对面山项上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l且点P在直线上,与水平地面的夹角为a ,tana=1/2试问此人距水平地面多高时,观看塔的视角∠BPC最大(不计此人的身高)
已知函数(I)求在区间上的最大值(II)是否存在实数使得的图象与的图象有且只有三个不同的交点?若存在,求出的取值范围;若不存在,说明理由。
已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个焦点为B,且=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.
设F1、F2为椭圆的两个焦点,P为上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求的值.
已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e. 直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.(Ⅰ)证明:λ=1-e2;(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.