如图,在四棱锥 P - A B C D 中,已知 P A ⊥ 平面 A B C D ,且四边形 A B C D 为直角梯形, ∠ A B C = ∠ B A D = π 2 , P A = A D = 2 , A B = B C = 1
(1)求平面 P A B 与平面 P C D 所成二面角的余弦值; (2)点 Q 是线段 B P 上的动点,当直线 C Q 与 D P 所成角最小时,求线段 B Q 的长
已知直角坐标平面内点到点与点的距离之和为 (Ⅰ)试求点的轨迹的方程; (Ⅱ)若斜率为的直线与轨迹交于、两点,点为轨迹上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.
(本小题满分12分)已知向量,. (1)若,分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率; (2)若,求满足的概率.
(本小题满分12分)一个四棱锥的直观图和三视图如图所示:
已知锐角三角形的内角的对边分别为,且 (1)求的大小; (2)若,三角形ABC的面积为1 ,求的值。
已知,点在函数的图象上,其中 (1)证明数列是等比数列; (2)设,求及数列的通项; (3)记,求数列的前项。