(本小题满分13分)已知椭圆()经过点,离心率为,动点().(1)求椭圆的标准方程;(2)求以(为坐标原点)为直径且被直线截得的弦长为的圆的方程;(3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,证明线段的长为定值,并求出这个定值.
已知数列及,,. (Ⅰ)求的值,并求数列的通项公式; (Ⅱ)设,求数列的前项和; (Ⅲ)若对一切正整数恒成立,求实数的取值范围.
某房地产开发商投资810万元建一座写字楼,第一年装修费为10万元,以后每年增加20万元,把写字楼出租,每年收入租金300万元. (Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润? (Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案: ①纯利润总和最大时,以100万元出售该楼; ②年平均利润最大时以460万元出售该楼,问哪种方案盈利更多?
已知函数, (Ⅰ)求函数的最小正周期及单调递增区间; (Ⅱ)在中,三内角,,的对边分别为,已知函数的图象经过点,成等差数列,且,求的值.
如图,函数y=2sin(x+φ) x∈R , 其中0≤φ≤的图象与y轴交于点(0,1). (Ⅰ)求φ的值; (Ⅱ)设P是图象上的最高点,M、N是图象与x轴的交点,求
已知a,b,c分别为△ABC内角A,B,C的对边,sin2B=2sinAsinC (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积.