(本小题满分12分)某学校举办消防知识竞赛,总共 7 个题中,分值为 10 分的有 共4 个,分值为 20 分的有 共3个,每位选手都要分别从 4 个 10 分题和 3 个 20 分题中各随机抽取 1 题参赛.已知甲选手 4 个 10 分题中只有 不会,3个 20 分题中只会.(Ⅰ)求甲选手恰好得30分的概率;(Ⅱ)求甲选手得分超过10分的概率.
一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (1)请把字母标记在正方体相应的顶点处(不需要说明理由) (2)判断平面与平面的位置关系.并证明你的结论. (3)证明:直线平面
如图,四边形与四边形都是梯形,,,,, 是的中点. (1)证明:平面; (2)判断、、、四点是否共面,并说明理由.
已知,将四边形绕轴旋转一周,求所得旋转体的表面积和体积.
空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.
某人上午7:00乘汽车以v1千米/小时(30≤v1≤100)匀速从A地出发到距300公里的B地,在B地不作停留,然后骑摩托车以v2千米/小时(4≤v2≤20)匀速从B地出发到距50公里的C地,计划在当天16:00至21:00到达C地.设乘汽车、骑摩托车的时间分别是x,y小时,如果已知所需的经费P=100+3(5﹣x)+2(8﹣y)元,那么v1,v2分别是多少时走的最经济,此时花费多少元?