(本小题满分12分)学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”.(Ⅰ)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;(Ⅱ)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R. (Ⅰ)求A∪B,(C A)∩B; (Ⅱ)若A∩C≠,求a的取值范围.
已知函数. (Ⅰ)求的最小正周期及的对称中心; (Ⅱ)求在区间上的最大值和最小值.
已知,且. (Ⅰ)求的值; (Ⅱ)求的值.
设为奇函数,为常数. (Ⅰ)求的值; (Ⅱ)判断在区间(1,+∞)的单调性,并说明理由; (Ⅲ)若对于区间[3,4]上的每一个值,不等式>恒成立,求实数的取值范围.
已知函数. (1)求函数的最小正周期和图像的对称轴方程; (2)求函数在区间上的值域.