已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.
在△ABC中,a、b、c分别是角A、B、C的对边,且. (1)求角B的大小; (2)若b=,a+c=4,求△ABC的面积.
在△ABC中,a=,b=,B=45°.求角A、C和边c.
设函数f(x)=sinxcosx+cos2x+a. (1)写出函数f(x)的最小正周期及单调递减区间; (2)当x∈时,函数f(x)的最大值与最小值的和为,求a的值.
设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为. (1)求ω的最小正周期; (2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.
已知ω>0,a=(2sinωx+cosωx,2sinωx-cosωx),b=(sinωx,cosωx).f(x)=a·b.f(x)图象上相邻的两个对称轴的距离是. (1)求ω的值; (2)求函数f(x)在区间上的最大值和最小值.