(本小题满分16分)已知为实数,函数,函数.(1)当时,令,求函数的极值;(2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.
(本小题满分12分) 如图,已知中,,平面,分别为上的动点. (1)若,求证:平面平面; (2)若,,求平面与平面所成的锐二面角的大小.
(本小题满分12分) 已知曲线的极坐标方程是,直线的参数方程是.
(本小题满分12分) 已知圆:与轴交于点、,与轴交于点、,其中为原点. (1)求证:的面积为定值; (2)设直线与圆交于点、,若,求圆的方程.
(本小题满分14分) 过轴上动点引抛物线的两条切线、,、为切点,设切线,的斜率分别为和. (1)求证:; (2)试问:直线是否经过定点?若是,求出该定点坐标;若不是,请说明理由.
.(本小题满分12分) 如图,已知中,,平面,分别为的中点. (1)求证:平面平面; (2)求直线与平面所成角的正弦值.