已知椭圆:(a>b>0)的中心在原点,焦点在轴上,离心率为,点F1、F2分别是椭圆的左、右焦点,在直线x=2上的点P(2, )满足|PF2|=|F1F2|,直线l:y=kx+m与椭圆C交于不同的两点A、 B.(Ⅰ)求椭圆C的方程; (Ⅱ)若在椭圆C上存在点Q,满足(O为坐标原点),求实数l的取值范围.
已知函数f(x)=,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.求a,b.
设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈ R,a,b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l. 求a,b的值,并求出切线l的方程.
在曲线y=x3+x-1上求一点P,使过P点的切线与直线4x-y=0平行.
求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.
已知曲线y=x3+1,求过点P(1,2)的曲线的切线方程.