若向量=(1,1,x), =(1,2,1), =(1,1,1),满足条件=-2,则= .
已知四棱锥P-ABCD的直观图(如图(1))及左视图(如图(2)),底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,PA=PB。(1)求证:AD⊥PB;(2)求异面直线PD与AB所成角的余弦值;(3)求平面PAB与平面PCD所成锐二面角的大小.
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(1)求双曲线C的方程;(2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.
如图,矩形中,,,为上的点,且,AC、BD交于点G.(1)求证:;(2)求证;;(3)求三棱锥的体积.
已知命题p:“”,命题q:“”若命题“p且q”是真命题,求实数a的取值范围.
已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足,. 当时,试证明直线过定点.过定点(1,0)