某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为 ( 490 , 495 ] , ( 495 , 500 ] ,…… ( 510 , 515 ] ,由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.
【选修4—2:矩阵与变换】(本小题满分10分) 已知点P(a,b),先对它逆时针旋转,再作N对应的变换,得到的点的坐标为(8,),求实数a,b的值.
【选修4—1几何证明选讲】(本小题满分10分) 如图,已知AE交BC于点D,交△ABC的外接圆于点E ,且ABACADAE. 求证:AE为△ABC的内角A的平分线.
(本小题满分16分)已知函数,. (1)当时,,求的单调区间; (2)当时,若,,求证:.
(本小题满分16分)设等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足(). (1)求数列的通项公式; (2)试确定的值,使得数列为等差数列; (3)当为等差数列时,对每个正整数,在与之间插入个2,得到一个新数列. 设是数列的前项和,试求满足的正整数.
(本小题满分16分)已知为椭圆:上任一点,为椭圆的左、右焦点,,离心率为. (1)求椭圆的方程; (2)若直线与椭圆交于两点,且线段AB的中点在直线上,为坐标原点,求三角形面积的最大值.