某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为 ( 490 , 495 ] , ( 495 , 500 ] ,…… ( 510 , 515 ] ,由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.
设函数,. (1)当时,求与函数图象相切且与直线平行的直线方程(2)求函数的单调区间(3)是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.
已知函数的定义域为,对任意实数,都有成立,且当时,有,试判断函数的奇偶性和单调性,并证明你的结论
记函数f(x)=的定义域为A,g(x)=lg的定义域为B(1)求A;(2)若BA,求实数a的取值范围.
设函数,其中(1)求的单调增区间(2)对任意的正整数,证明:
某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总得分数,求ξ的分布列