设圆C满足:(1)截轴所得弦长为2;(2)被轴分成两段圆弧,其弧长的比为5∶1.在满足条件(1)、(2)的所有圆中,求圆心到直线:3-4=0的距离最小的圆的方程.
(本题12分)如图,长方体中,,,点为的中点。 (1)求证:直线∥平面; (2)求证:平面平面; (3)求证:直线平面。
已知函数是其定义域内的奇函数,且18 (1)求f(x)的表达式; (2)设(x > 0 ) 求的值.
把边长为60cm的正方形铁皮的四角切去边长为xcm的相等的正方形,然后折成一个高度为xcm的无盖的长方体的盒子,问x取何值时,盒子的容积最大,最大容积是多少?
(本小题满分12分) 已知函数f (x)=ln(1+x)+a (x+1)2(a为常数). (Ⅰ)若函数f (x)在x=1处有极值,判断该极值是极大值还是极小值; (Ⅱ)对满足条件a≤的任意一个a,方程f (x)=0在区间(0,3)内实数根的个数是多少?
(本小题满分12分) 已知函数f (x)=alnx+x2(a为实常数). (Ⅰ)若a=-2,求证:函数f (x)在(1,+∞)上是增函数;(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值; (Ⅲ)若当x∈[1,e]时,f(x)≤(a+2)x恒成立,求实数a的取值范围.