在三棱锥P-ABC中,D为AB的中点。(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。
数列的各项均为正数,为其前项和,对于任意的,总有成等差数列. (1)求; (2)求数列的通项公式; (3)设数列的前项和为,且,求证:对任意正整数,总有
在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥. (1)请判断与平面的位置关系,并给出证明; (2)证明平面; (3)求四棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(1)求,; (2)若从高校B、C抽取的人中选2人作专题发言, 求这2人都来自高校C的概率.
已知函数, (1)求的值; (2)若,且,求.
已知函数 (1)当时,求在上的最小值; (2)若函数在上为增函数,求正实数的取值范围; (3)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.