(本小题满分15分)如图,四棱锥的底面是正方形,侧棱⊥底面,,是的中点.(Ⅰ)证明://平面; (Ⅱ)求二面角的平面角的余弦值;(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.
已知,,当为何值时, (1)与垂直? (2)与平行?平行时它们是同向还是反向?
已知,且是第一象限角. (1)求的值; (2)求的值.
设函数的定义域是,对于任意的,有,且当时,. (1)求的值; (2)判断函数的奇偶性; (3)用函数单调性的定义证明函数为增函数; (4)若恒成立,求实数的取值范围.
已知函数的周期为. (1)若,求它的振幅、初相; (2)在给定的平面直角坐标系中作出该函数在的图像; (3)当时,根据实数的不同取值,讨论函数的零点个数.
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图像,当时,图像是二次函数图像的一部分,其中顶点,过点;当时,图像是线段,其中,根据专家研究,当注意力指数大于62时,学习效果最佳. (1)试求的函数关系式; (2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.