(本小题满分14分)已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.(1)求椭圆的标准方程;(2)是否存在与椭圆交于,两点的直线(),使得成立?若存在,求出实数的取值范围;若不存在,请说明理由.
设的内角所对的边长分别为,且满足(Ⅰ)求角的大小;(Ⅱ)若,边上的中线的长为,求的面积.
已知正项数列的前项和为,是与的等比中项.(Ⅰ)若,且,求数列的通项公式;(Ⅱ)在(Ⅰ)的条件下,若,求数列的前项和.
已知函数.(Ⅰ)当时,求函数的定义域;(2)若关于的不等式的解集是,求的取值范围.
知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,直线l的方程为: (Ⅰ)求椭圆的方程;(Ⅱ)已知直线l与椭圆相交于、两点 ①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值
如图,F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60° (1)求椭圆C的离心率; (2)已知△AF1B的面积为40,求a,b的值