【原创】(本小题满分12分)已知函数()的图象过点.(1)求函数的解析式;(2)若,,求的值.
在中,角A,B,C所对的边分别为.(Ⅰ)叙述并证明正弦定理;(Ⅱ)设,,求的值.
已知在等比数列中,,且是和的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求的前项和.
已知函数,其中实数a为常数.(I)当a=-l时,确定的单调区间:(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;(Ⅲ)当a=-1时,证明.
某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:),(单位:弧度).(I)将S表示为的函数;(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.
已知数列是首项为1,公差为2的等差数列,数列的前n项和.(I)求数列的通项公式;(II)设, 求数列的前n项和.