【原创】设复数,(1)若,,求复数的实部为奇数,虚部为偶数的概率;(2) 若,,设表示直线与圆的交点个数,列出的概率分布列,并求出的数学期望;
一质点运动的方程为s=8-3t2. (1)求质点在[1,1+△t]这段时间内的平均速度; (2)用定义法求质点在t=1时的瞬时速度.
已知单调递增的等比数列满足:,且是,的等差中项. (1)求数列的通项公式; (2)若,,求.
已知函数的图象经过点,曲线在点处的切线恰好与直线垂直. (1)求实数的值; (2)若函数在区间上单调递增,求的取值范围.
如图,在四棱锥中,平面,底面是菱形,,,为与的交点,为棱上一点. (Ⅰ)证明:平面⊥平面; (Ⅱ)若平面,求三棱锥的体积.
数列{}的前项和为,是和的等差中项,等差数列{}满足,. (1)求数列,的通项公式; (2)若,求数列的前项和.