《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马 P - A B C D 中,侧棱 P D ⊥ 底面 A B C D ,且 P D = C D ,点 E 是 P C 的中点,连接 D E , B D , B E .
(Ⅰ)证明: D E ⊥ 平面 P B C . 试判断四面体 E B C D 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由; (Ⅱ)记阳马 P - A B C D 的体积为 V 1 ,四面体 E B C D 的体积为 V 2 ,求 V 1 V 2 A B C D 的值.
如图所示,矩形 A B C D 和梯形 B E F C 所在平面互相垂直, B E ∥ C F , ∠ B C F = ∠ C E F = 90 ° , A D = 3 , E F = 2 .
(1)求证: A E ∥ 平面 D C F ; (2)当 A B 的长为何值时,二面角 A - E F - C 的大小为 60 ° ?
如图所示,在矩形ABCD中,AB=2BC=2a,E为AB上一点,将B点沿线段EC折起至点P,连接PA、PC、PD,取PD的中点F,若有AF∥平面PEC.(1)试确定E点位置; (2)若异面直线PE、CD所成的角为60°,并且PA的长度大于a, 求证:平面PEC⊥平面AECD.
三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1, ∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,=. (1)证明:平面A1AD⊥平面BCC1B1; (2)求二面角A—CC1—B的余弦值.
一个多面体的直观图和三视图(正视图、左视图、俯视图)如图所示,M、N分别为A1B、B1C1的中点.求证: (1)MN∥平面ACC1A1; (2)MN⊥平面A1BC.
在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD; (2)平面EFC⊥平面BCD.