如图所示,在矩形ABCD中,AB=2BC=2a,E为AB上一点,将B点沿线段EC折起至点P,连接PA、PC、PD,取PD的中点F,若有AF∥平面PEC.(1)试确定E点位置;(2)若异面直线PE、CD所成的角为60°,并且PA的长度大于a,求证:平面PEC⊥平面AECD.
用0,1,2,3,4,5这六个数字(允许重复),组成四位数. ( I)可以组成多少个四位数? ( II)可组成多少个恰有两个相同数字的四位数?
设函数 (Ⅰ)当时,求函数的极值; (Ⅱ)当时,讨论函数的单调性. (Ⅲ)若对任意及任意,恒有成立,求实数的取值范围.
已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为. (Ⅰ)求椭圆的方程; (Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.
如图,已知为平行四边形,,,,点在上,,,与相交于.现将四边形沿折起,使点在平面上的射影恰在直线上. (Ⅰ) 求证:平面; (Ⅱ) 求折后直线与平面所成角的余弦值.
袋中有大小相同的个编号为、、的球,号球有个,号球有个,号球有个.从袋中依次摸出个球,已知在第一次摸出号球的前提下,再摸出一个号球的概率是. (Ⅰ)求、的值; (Ⅱ)从袋中任意摸出个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望.