设函数(a>0,b,cÎR),曲线在点P(0,f (0))处的切线方程为. (Ⅰ)试确定b、c的值; (Ⅱ)是否存在实数a使得过点(0,2)可作曲线的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.
(本小题满分12分) 已知向量,且 (Ⅰ)求tanA的值; (Ⅱ)求函数R)的值域.
(本小题满分14分)已知数列是以4为首项的正数数列,双曲线的一个焦点坐标为, 且, 一条渐近线方程为. (1)求数列的通项公式; (2) 试判断: 对一切自然数,不等式是否恒成立?并说明理由.
(本小题满分14分)2008年奥运会在中国举行,某商场预计2008年从1日起前个月,顾客对某种奥运商品的需求总量件与月份的近似关系是且,该商品的进价元与月份的近似关系是且. (1)写出今年第月的需求量件与月份的函数关系式; (2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场 今年销售该商品的月利润预计最大是多少元?
(本小题满分14分)设椭圆的左焦点为,上顶点为,过点与垂直的直线分别交椭圆与轴正半轴于点,且. ⑴求椭圆的离心率;⑵若过、、三点的圆恰好与直线相切,求椭圆的方程.
(本小题满分13分)如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由沿棱柱侧面经过棱到点的最短路线长为,设这条最短路线与的交点为. (1)求三棱柱的体积; (2)在面内是否存在过的直线与面平行?证明你的判断; (3)证明:平面⊥平面.