设函数(a>0,b,cÎR),曲线在点P(0,f (0))处的切线方程为. (Ⅰ)试确定b、c的值; (Ⅱ)是否存在实数a使得过点(0,2)可作曲线的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.
已知抛物线及点,直线斜率为且不过点,与抛物线交于点、两点. (Ⅰ)求直线在轴上截距的取值范围;(Ⅱ)若、分别与抛物线交于另一点、,证明:、交于定点.
(本小题满分14分)设函数(Ⅰ)研究函数的极值点;(Ⅱ)当p>0时,若对任意的x>0,恒有,求p的取值范围;(Ⅲ)证明:
(本题满分14分)已知函数,,是函数的导函数.(I)若,求函数的单调递减区间; (II)若,,求方程有实数根的概率.
(本小题满分14分)如图所示,在四面体P—ABC中,已知PA=BC=6,PC=AB=8,AC=,PB=10,F是线段PB上一点,,点E在线段AB上,且EF⊥PB.(Ⅰ)证明:PB⊥平面CEF;(Ⅱ)求二面角B—CE—F的正弦值
(本小题满分12分)在中,角所对应的边分别为,且满足.(I)求角的度数;(II)求的取值范围.