设数列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,(-1)k-1k,…,(-1)k-1k,…,即当<n≤(k∈N*)时,an=(-1)k-1k,记Sn=a1+a2+…+an(n∈N*).对于l∈N*,定义集合Pl={n|Sn是an的整数倍,n∈N*,且1≤n≤l}.(1)求集合P11中元素的个数;(2)求集合P2 000中元素的个数.
已知数列的前项和为,,是与的等差中项().(Ⅰ)证明数列为等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)是否存在正整数,使不等式()恒成立,若存在,求出的最大值;若不存在,请说明理由.
已知函数,.(Ⅰ)当,时,求的单调区间;(2)当,且时,求在区间上的最大值.
设数列满足:,,.(Ⅰ)求的通项公式及前项和;(Ⅱ)已知是等差数列,为前项和,且,.求的通项公式,并证明:.
已知向量,,设函数,.(Ⅰ)求的最小正周期与最大值;(Ⅱ)在中, 分别是角的对边,若的面积为,求的值.
已知函数,.(Ⅰ) 求的值; (Ⅱ) 若,,求.