(本题满分12分) 如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点. (Ⅰ)求证:PB平面ADMN; (Ⅱ)求四棱锥P-ADMN的体积.
(本题14分)如图,在三棱锥P—ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.(1)证明:AB⊥PC;(2)证明:PE//平面FGH。
已知命题:存在使得成立,命题:对于任意,函数恒有意义.(1)若是真命题,求实数的取值范围;(2)若是假命题,求实数的取值范围.
已知点是圆上任意一点,过点作轴的垂线,垂足为,点满足 记点的轨迹为曲线.(Ⅰ)求曲线的方程;(Ⅱ)设,点在曲线上,且直线与直线的斜率之积为,求的面积的最大值.
如图,矩形所在的半平面和直角梯形所在的半平面成的二面角,∥,,,,,.(Ⅰ)求证:∥平面;(Ⅱ)在线段上求一点,使锐二面角的余弦值为
(本题14分)已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为.(1)求椭圆及其“伴随圆”的方程;(2)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积的最大值.