【改编】(本小题满分13分)已知函数.(1)求函数的单调区间;(2)当时,,求实数的取值范围.
设是等差数列的前n项和,其中,且, (Ⅰ)求常数的值,并求数列的通项公式; (Ⅱ)记,设数列的前n项和为,求最小的正整数,使得对任意的,都有成立.
已知椭圆C:的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为、、,且、、恰好构成等比数列. (Ⅰ)求椭圆C的方程. (Ⅱ)试探究是否为定值?若是,求出这个值;否 则求出它的取值范围.
已知函数,其中,. (Ⅰ)当时,且为奇函数,求的表达式; (Ⅱ)当时,且在上单调递减,求的值.
如图,正方形与等边三角形所在的平面互相垂直,分别是的中点. (Ⅰ)证明:∥平面; (Ⅱ)求二面角的正切值.
已知函数在区间上的最大值为. (Ⅰ)求常数的值; (Ⅱ)在中,角所对的边长分别为,若,,面积为,求边长的值.