如图1,在直角梯形中,,,, 点 为中点.将沿折起, 使平面平面,得到几何体,如图2所示. (1)在上找一点,使平面; (2)求点到平面的距离.
(本小题满分12分)已知等差数列满足。(Ⅰ)求通项的通项公式及的最大值;(Ⅱ)设,求数列的其前项和.
(本小题14分)某人有楼房一幢,室内面积共计180m2,拟分割成两类房间作为旅游客房,大房间每间面积为18m2,可住游客5名,每名游客每天住宿费40元;小房间每间面积为15m2,可以住游客3名,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他应隔出大房间和小房间各多少间,每天能获得最大的房租收益?(注:设分割大房间为x间,小房间为y间,每天的房租收益为z元)(1)写出x,y所满足的线性约束条件; (2)写出目标函数的表达式;(3)求x,y各为多少时,每天能获得最大的房租收益?每天能获得最大的房租收益是多少?
(本小题12分)运货卡车以每小时千米的速度匀速行驶130千米(单位:千米/小时).假设汽油的价格是每升2a元,而汽车每小时耗油升,司机的工资是每小时14a元.(1)求这次行车总费用关于的表达式;(2)当为何值时,这次行车的总费用最低,并求出最低费用的值(a为常数) .
(本小题12分)等差数列的前项和记为,已知.(1)求数列的通项;(2)若,求;(3)令,求数列的前项和.
(本小题12分)ΔABC中A,B,C的对边分别为a,b,c,且求:(1)角B的大小; (2)若,求ΔABC的面积.