(本小题满分12分)已知四棱锥,在四边形中,,,平面底面,(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.
函数f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<)的图象如图所示,(1)求y= f(x)的表达式;(2)若,求y=f(x)的值域。
(本小题满分14分)已知定义在实数集上的函数fn(x)=xn,n∈N*,其导函数记为,且满足,a,x1,x2为常数,x1≠x2.(1)试求a的值;(2)记函数,x∈(0,e],若F(x)的最小值为6,求实数b的值;(3)对于(2)中的b,设函数,A(x1,y1),B(x2,y2)(x1<x2)是函数g(x)图象上两点,若,试判断x0,x1,x2的大小,并加以证明.
(本小题满分14分)已知函数 ,.(1)当时,求曲线在点(3,)处的切线方程;(2)当函数在上有唯一的零点时,求实数的取值范围.
(本小题满分14分)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米.记防洪堤横断面的腰长为(米),外周长(梯形的上底线段与两腰长的和)为(米).⑴求关于的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过米,则其腰长应在什么范围内?⑶当防洪堤的腰长为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.
(本小题满分14分)在平面直角坐标系中,为坐标原点,已知向量,又点.(1)若,且,求向量;(2)若向量与向量共线,当时,且取最大值为4时,求.