已知等差数列满足:,.的前项和为.(1)求及;(2)令,求数列的前项和.
已知函数f(x)=ax2+a2x+2b-a3,当x∈(-2,6)时,其值为正,而当x∈(-∞,-2)∪(6,+∞)时,其值为负.(Ⅰ)求实数a,b的值及函数f(x)的表达式;(Ⅱ)设F(x)=-f(x)+4(k+1)x+2(6k-1),问k取何值时,函数F(x)的值恒为负值?
.若非零函数对任意实数均有¦(a+b)=¦(a)·¦(b),且当时,. (1)求证:; (2)求证:为减函数; (3)当时,解不等式
.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明 PA//平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.
.某飞机制造公司一年中最多可生产某种型号的飞机100架。已知制造x架该种飞机的产值函数为R(x)=3000x-20x2 (单位:万元),成本函数C(x)="500x+4000" (单位:万元)。利润是收入与成本之差,又在经济学中,函数¦(x)的边际利润函数M¦x)定义为:M¦x)=¦(x+1)-¦(x). ①、求利润函数P(x)及边际利润函数MP(x);(利润=产值-成本) ②、问该公司的利润函数P(x)与边际利润函数MP(x)是否具有相等的最大值?
.(1)、求经过直线和的交点,且垂直于直线的直线方程.(2)、直线l经过点,且和圆C:相交,截得弦长为,求l的方程.