(本小题满分12分)已知椭圆上任意一点到两焦点距离之和为,离心率为.(1)求椭圆的标准方程;(2)若直线的斜率为,直线与椭圆C交于两点.点为椭圆上一点,求△PAB的面积的最大值.
已知定义在R上的函数的最小值为.(1)求的值;(2)若为正实数,且,求证:.
以平面直角坐标系的原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点的极坐标为,直线过点且与极轴成角为,圆的极坐标方程为.(1)写出直线参数方程,并把圆的方程化为直角坐标方程;(2)设直线与曲线圆交于、两点,求的值.
如图,是⊙的直径,是弦,的平分线交⊙于点,,交的延长线于点,交于点.(1)求证:是⊙的切线;(2)若,求的值
已知函数,(为自然对数的底数)(1)求函数的最小值;(2)若对任意的恒成立,求实数的值;(3)在(2)的条件下,证明:
已知数列是递增的等比数列,且(1)求数列的通项公式;(2)设为数列的前n项和,,求数列的前n项和。