(本小题满分10分)选修4-1:几何证明选讲如图所示,AC为的直径,D为的中点,E为BC的中点.(Ⅰ)求证:AB∥DE;(Ⅱ)求证:2AD·CD=AC·BC.
已知椭圆的左右焦点分别为,为半焦距, (1)求椭圆离心率的取值范围; (2)设椭圆的短半轴长为,以为圆心,为半径作圆,圆与轴的右交点为,过点作倾斜角不为直线与椭圆相交于两点,若,求直线被圆截得的弦长的取值范围。
如图,在各棱长均为的三棱柱中,侧面底面,. (1)求侧棱与平面所成的角; (2)已知点满足,在直线上的点,满足,求二面角的余弦值。
已知动点到点的距离比它到直线的距离小1,记点的轨迹为. (1)求曲线的方程; (2)过点的直线交曲线于两点,若,求直线的方程
如图,在四棱锥中,底面是直角梯形,,面面, (1)证明:面; (2)若点是线段上一点,且,求三棱锥的体积。
如图,在四面体中,平面,,且、、、分别为、、、的中点. (1)证明:∥平面; (2)若直线与平面所成的角的正弦值为,求的长。