甲、乙、丙、丁四位好友约好出去游玩,为了增加乐趣,游玩的费用四人约好:每人掷一枚质地均匀的骰子决定出资的数值,掷出的点数为1或2的人出资200元,掷出的点数大于2的人出资100元;(1)求这4个人中恰好有两人出资200元的概率;(2)用分别表示四个人出资200元、100元的人数,记,求的概率分布列和数学期望;
已知函数 (1)求函数的单调区间与极值点; (2)若对,函数满足对都有成立,求实数的取值范围(其中是自然对数的底数)。
如图,四边形ABCD是正方形,平面ABCD,MA//PB,PB=AB=2MA=2。 (1)P、C、D、M四点是否在同一平面内,为什么? (2)求证:面PBD 面PAC;(3)求直线BD和平面PMD所成角的正弦值。
某市图书馆有三部电梯,每位乘客选择哪部电梯到阅览室的概率都是。现有5位乘客准备乘电梯到阅览室。 (1)求5位乘客选择乘同一部电梯到阅览室的概率; (2)若记5位乘客中乘第一部电梯到阅览室的人数为,求的分布列和数学期望
已知) (1)求的值; (2)求的值。
(本小题满分12分) 已知数列的前n项和满足:(为常数,且). (Ⅰ)求的通项公式; (Ⅱ)设,若数列为等比数列,求的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为.求证:.