如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点,若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
选修4-1:几何证明选讲如图,四边形是的内接四边形,的延长线与的延长线交于点,且.(Ⅰ)证明:;(Ⅱ)设不是的直径,的中点为,且,证明:为等边三角形.
已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥-2时,f(x)≤kg(x),求k的取值范围.
如图,三棱柱中,侧面为菱形,.(Ⅰ)证明:;(Ⅱ)若,,,求二面角的余弦值.
从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值和样本方差(同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标服从正态分布,其中近似为样本平均数,近似为样本方差.(ⅰ)利用该正态分布,求;(ⅱ)某用户从该企业购买了100件这种产品,记表示这100件产品中质量指标值位于区间的产品件数.利用(ⅰ)的结果,求.附:若则,.
已知数列的前项和为,,,,其中为常数.(1)证明:;(2)是否存在,使得为等差数列?并说明理由.