(本小题满分13分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点. (Ⅰ)求椭圆C的方程; (Ⅱ)点P(2,3), Q(2,-3)在椭圆上,A,B是椭圆上位于直线PQ两恻的动点, ①若直线AB的斜率为,求四边形APBQ面积的最大值; ②当A、B运动时,满足于∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.
已知函数 (1)求函数的定义域; (2)求函数的零点; (3)若函数的最小值为,求的值.
计算 (1) (2)
已知全集,集合,, (1)求. (2)若集合是集合A的子集,求实数k的取值范围.
如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且. (1)建立适当的坐标系,求椭圆方程; (2)如果椭圆上两点使直线与轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.
已知函数,且在处取得极值. (1)求的值; (2)若当时,恒成立,求的取值范围; (3)对任意的是否恒成立?如果成立,给出证明,如果不成立,请说明理由.