(本小题满分12分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为.(Ⅰ)求小刘第一次参加测试就合格的概率;(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量的分布列和数学期望.
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。(1)求的周长(2)求的长 (3)若直线的斜率为1,求b的值。
已知的周长为,且.(1)求边长的值;(2)若,求的值.
如图,已知三棱锥,为中点,为的中点,且,.(1)求证:;(2)找出三棱锥中一组面与面垂直的位置关系,并给出证明(只需找到一组即可)
已知双曲线的离心率为,左、右焦点分别为、,一条准线的方程为.(1)求双曲线的方程;(2)若双曲线上的一点满足,求的值;(3)若直线与双曲线交于不同的两点,且在以为圆心的圆上,求实数的取值范围.
已知函数.(1)当时,求的单调递增区间;(2)是否存在,使得对任意的,都有恒成立.若存在,求出的取值范围; 若不存在,请说明理由.