(本小题满分12分)某运动队拟在2015年3月份安排5次体能测试,规定:依次测试,只需有一次测试合格就不必参加后续的测试.已知运动员小刘5次测试每次合格的概率依次构成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为.(Ⅰ)求小刘第一次参加测试就合格的概率;(Ⅱ)在小刘参加第一、第二次测试均不合格的前提下,记小刘参加后续测试的次数为,求随机变量的分布列和数学期望.
已知椭圆(a>b>0) (1)当椭圆的离心率,一条准线方程为x=4 时,求椭圆方程; (2)设是椭圆上一点,在(1)的条件下,求的最大值及相应的P点坐标。 (3)过B(0,-b)作椭圆(a>b>0)的弦,若弦长的最大值不是2b,求椭圆离心率的取值范围。
已知双曲线,顺次连接其实轴、虚轴端点所得四边形的面积为8, (1)求双曲线焦距的最小值,并求出焦距最小时的双曲线方程; (2)设A、B是双曲线上关于中心对称的两点,P是双曲线上另外一点,若直线PA、PB的斜率乘积等于,求双曲线方程。
中,A、B两点的坐标分别是(-2,0)(2,0),AC、AB、BC成等差数列。 (1)求顶点C的轨迹方程; (2)直线y=x-2与C点轨迹交于MN两点,求线段MN长度。
已知函数在x=1处有极值10. (1)求a、b的值; (2)求的单调区间; (3)求在[0,4]上的最大值与最小值。
设方程表示曲线C. (1)m=5时,求曲线C的离心率和准线方程; (2)若曲线C表示椭圆,求椭圆焦点在y轴上的概率。