下图为某校语言类专业N名毕业生的综合测评成绩(百分制)分布直方图,已知80~90分数段的学员数为21人(Ⅰ)求该专业毕业总人数N和90~95分数段内的人数;(Ⅱ)现欲将90~95分数段内的名毕业生分配往甲、乙、丙三所学校,若向学校甲分配两名毕业生,且其中至少有一名男生的概率为,求名毕业生中男女各几人(男女人数均至少两人)?(Ⅲ)在(Ⅱ)的结论下,设随机变量表示n名毕业生中分配往乙学校的三名学生中男生的人数,求的分布列和数学期望.
函数函数的图像如图所示。 (Ⅰ)求的值; (Ⅱ)求函数的单调区间。
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=(0<x≤120). 已知甲、乙两地相距100千米。 (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
已知函数 (1)试求b,c所满足的关系式; (2)若b=0,方程有唯一解,求a的取值范围.
某公司春节联欢会预设一抽奖活动:在一个不透明的口袋中装入外形一样,号码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。 (1)员工甲抽奖一次所得奖金的分布列与期望; (2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩,列出如下所示2×2列联表:
(1)根据题中表格的数据计算,你有多少的把握认为学生的数学成绩与物理成绩之间有关系? (2)若按下面的方法从这20人(序号1,2,3,…,20)中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:①抽到12号的概率;②抽到 “无效序号(序号大于20)”的概率. 参考公式:,其中) 临界值表供参考: