(本小题满分13分)已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设直线()与椭圆相交于、两点,以线段、为邻边作平行四边形,其中顶点在椭圆上,(其中为坐标原点),求的取值范围.
命题p:关于的不等式的解集为; 命题q:函数为增函数. 分别求出符合下列条件的实数的取值范围. (1)p、q至少有一个是真命题;(2)p∨q是真命题且p∧q是假命题.
抛物线的顶点在原点,它的准线过双曲线的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程。
已知抛物线直线过抛物线的焦点且与该抛物线交于、两点(点A在第一象限) (Ⅰ)若,求直线的方程; (Ⅱ)过点的抛物线的切线与直线交于点,求证:。
已知椭圆+=1(a>b>0)上的点M (1, )到它的两焦点F1,F2的距离之和为4,A、B分别是它的左顶点和上顶点。 (Ⅰ)求此椭圆的方程及离心率; (Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程。
已知平面四边形的对角线交于点,,且,,.现沿对角线将三角形翻折,使得平面平面.翻折后: (Ⅰ)证明:;(Ⅱ)记分别为的中点.①求二面角大小的余弦值; ②求点到平面的距离