某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量不足件时,(万元).当年产量不小于件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?
已知,⑴求的值;⑵求的值.
已知函数,数列满足:. (Ⅰ)求证:; (Ⅱ)求数列的通项公式; (Ⅲ)求证不等式:
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点. (1)求椭圆的方程: (2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标; (3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.
已知函数 (1)若函数的最小值是,且,求的值: (2)若,且在区间恒成立,试求取范围;
(Ⅰ)如果三段的长度均为整数,求能构成三角形的概率; (Ⅱ)如果把铁丝截成2,2,3的三段放入一个盒子中,然后有放回地摸4次,设摸到长度为2的次数为,求与; (Ⅲ)如果截成任意长度的三段,求能构成三角形的概率.