经销商经销某种农产品,在一个销售季度内,每售出1t该产品可获得利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该产品,以(单位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内该农产品的销售利润.(1)将表示为的函数;(2)根据直方图估计利润不少于57000元的概率.
已知函数为自然对数的底数) (Ⅰ)当时,求函数的极值; (Ⅱ)若函数在上单调递减,求的取值范围.
如图,已知四棱锥中,是边长为的正三角形,平面平面,四边形是菱形,,是的中点,是的中点. (1)求证:平面. (2)求二面角的余弦值.
数列满足. (1)计算,,,,并由此猜想通项公式; (2)用数学归纳法证明(1)中的猜想.
设函数,. (1)解不等式; (2)若恒成立的充分条件是,求实数的取值范围.
数列的通项公式为,其前项和为. (1)求及的表达式; (2)若,求数列的前项和; (3)若,令,求的取值范围.