经销商经销某种农产品,在一个销售季度内,每售出1t该产品可获得利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该产品,以(单位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内该农产品的销售利润.(1)将表示为的函数;(2)根据直方图估计利润不少于57000元的概率.
已知函数. (1)若在上存在零点,求实数的取值范围; (2)当时,若对任意的,总存在使成立,求实数的取值范围.
如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0. (1)求椭圆的方程; (2)求MN的最小值; (3)以MN为直径的圆C是否过定点?
已知函数f(x)=ax2-(2a+1)x+2lnx(a∈R). (1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值; (2)当a≤0时,求f(x)的单调区间。
已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2), (1)求P1,P2两点在双曲线xy=6上的概率; (2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。
如图是总体的一个样本频率分布直方图,且在区间[15,18)内的频数为8. (1)求样本容量; (2)若在[12,15)内的小矩形的面积为0.06, ①求样本在[12,15)内的频数; ②求样本在[18,33)内的频率。