经销商经销某种农产品,在一个销售季度内,每售出1t该产品可获得利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该产品,以(单位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内该农产品的销售利润.(1)将表示为的函数;(2)根据直方图估计利润不少于57000元的概率.
(本小题满分12分)已知椭圆的左、右焦点分别为、,其中也是抛物线的焦点,是与在第一象限的交点,且.(Ⅰ)求椭圆的方程;(Ⅱ)已知菱形的顶点A﹑C在椭圆上,顶点B﹑C在直线上,求直线 的方程.
(本小题满分13分)如图,四面体中,是的中点,,.(Ⅰ)求证:平面;(Ⅱ)求异面直线与所成角的大小;(Ⅲ)求二面角的大小.
(本小题满分13分)某商场准备在暑假期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.(Ⅰ)试求选出的3种商品至少有一种日用商品的概率;(Ⅱ)商场对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高180元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等概率的.请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?
(本小题满分13分)在中,角﹑﹑所对的边分别为﹑﹑,已知,,.(Ⅰ)求的值及的面积;(Ⅱ)求的值.
(本小题满分12分)如图,椭圆长轴端点为,为椭圆中心, 为椭圆的右焦点,且,.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心? 若存在,求出直线的方程;若不存在,请说明理由.