(本小题满分12分)如图,椭圆长轴端点为,为椭圆中心, 为椭圆的右焦点,且,.(1)求椭圆的标准方程;(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心? 若存在,求出直线的方程;若不存在,请说明理由.
过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0与l2:x+y+3=0之间的线段AB恰被点P平分,求此直线的方程.
某人在一山坡P处观看对面山顶上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l,且点P在直线l上,l与水平地面的夹角为,tan=.试问,此人距水平地面多高时,观看塔的视角∠BPC最大(不计此人的身高)?
已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:(1)过定点A(-3,4);(2)斜率为.
已知两点A(-1,2),B(m,3).(1)求直线AB的方程;(2)已知实数m∈,求直线AB的倾斜角的取值范围.
已知线段PQ两端点的坐标分别为(-1,1)、(2,2),若直线l:x+my+m=0与线段PQ有交点,求m的取值范围.