(本小题满分13分)某商场准备在暑假期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.(Ⅰ)试求选出的3种商品至少有一种日用商品的概率;(Ⅱ)商场对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高180元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等概率的.请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?
如图,在平面直角坐标系中,平行于轴且过点(3,2)的入射光线被直线反射.反射光线交轴于点,圆过点且与都相切。 (1)求所在直线的方程和圆的方程; (2)设分别是直线和圆上的动点,求的最小值及此时点的坐标.
在正三棱锥中,、分别为棱、的中点,且。 (1)求证:直线平面; (2)求证:平面平面。
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。 (Ⅰ)求出该几何体的体积; (Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由。
已知命题和命题,若是的必要不充分条件,求实数的取值范围。
选修4-5:不等式选讲 已知函数的定义域为. (1)求实数的取值范围; (2)若的最大值为,当正数满足时,求的最小值.