(1)解不等式组:(2)化简:
( 10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?
某中学从2007年以来,一直坚持开展用眼健康方面的教育,并进行跟踪治疗. 为了调查全校学生的视力变化情况,从中抽取部分学生近几年视力检查的结果做了统计(如图1),并统计了2010年这部分学生的视力分布情况(如表1和图2).
(1)根据以上图表中提供的信息写出:a= , b= , x+y= ;(2)由统计图中的信息可知,近几年学生视力为5.0的学生人数每年与上一年相比,增加最多的是 年;若全校有3000名学生,请你估计2010年全校学生中视力达到5.0及5.0以上的约有 人.
( 10分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G. (1) 求证:AD是⊙O的切线; (2) 如果⊙O的半径是6cm,EC=8cm,求GF的长.
某楼盘准备以每平方米元的均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望.为了加快资金周转,房地产开发商对价格进行两次下调,最终以每平方米元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以每平方米元的均价购买一套平方米的房子.开发商还给予以下两种优惠方案以供选择:①一次付清全款打九九折;②一次付清全款不打折,送五年物业管理费.如该楼盘物业管理费是每月元/米2.请问哪种方案更优惠?
( 10分)如图,在平面直角坐标系中,Rt△OAB的直角边OA在x轴的正半轴上,点B在第象限,将△OAB绕点O按逆时针方向旋转至△OA′B′,使点B的对应点B′落在y轴的正半轴上,已知OB=2, (1)求点B和点A′的坐标; (2)求经过点B和点B′的直线所对应的一次函数解析式,并判断点A是否在直线BB′上。