如图,直线的解析表达式为,且与轴交于点D,直线经过点A,B,直线和交于点C.(1)求直线的解析表达式;(2)求△ADC的面积;(3)直线上存在异于点C的另一点P,使△ADP与△ADC面积相等,求出点P的坐标.
已知:如图,二次函数的图象与x轴交于A(﹣2,0),B(4,0)两点,且函数的最大值为9.(1)求二次函数的解析式;(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.
如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围;(2)当x取什么值时,y的值最大?并求最大值.
已知二次函数.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出此函数图象与的图象的关系.
已知函数.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?
(1)阅读下列材料,求函数的最大值.解:将原函数转化成关于x的方程,得.当y=3时,为一元一次方程,得;当y≠3时,为一元二次方程,∵x为实数,∴△=,∴y≤4且y≠3.综上所述,y的取值范围是y≤4,即y的最大值为4.根据材料给你的启示,求函数的最小值.(2)如图所示,酒店大堂一吊灯的下圆环直径为米,通过拉链悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即OB)为2米.在圆环上设置三个等分点A1、A2、A3,点C为OB上一点(不与端点O、B重合),同时点C与点A1、A2、A3和点B均用拉链相连结,且CA1、CA2、CA3的长度相等.要使拉链的总长最短,BC应为多长?