本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知椭圆的中心在坐标原点,焦点在轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点与轴不垂直的直线交椭圆于两点.(1)求椭圆的方程;(2)当直线的斜率为1时,求的面积;(3)在线段上是否存在点,使得以为邻边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.
已知分别是的三个内角的对边,. (Ⅰ)求角的大小; (Ⅱ)求函数的值域.
已知二次函数为常数,且)满足条件:,且方程有两个相等的实数根. (1)求的解析式; (2)求函数在区间上的最大值和最小值; (3)是否存在实数使的定义域和值域分别为和,如果存在,求出的值,如不存在,请说明理由.
已知函数 (1)它是奇函数还是偶函数?并给出证明. (2)它的图象具有怎样的对称性? (3)它在上是增函数还是减函数?并用定义证明.
已知集合A={x| }, B="{x|" } 求;
已知函数 (Ⅰ)设在区间的最小值为,求的表达式; (Ⅱ)设,若函数在区间上是增函数,求实数的取值范围。