对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:<m<1;⑵若|x1|<2且|x1-x2|=2,求b的取值范围.
已知函数. (1)证明函数具有奇偶性; (2)证明函数在上是单调函数; (3)求函数在上的最值.
化简求值: (1); (2); (3).
已知集合,. (1)若,求; (2)若,求的取值范围.
设曲线:,表示的导函数。 (Ⅰ)当时,求函数的单调区间; (Ⅱ)求函数的极值; (Ⅲ)当时,对于曲线上的不同两点,是否存在唯一,使直线的斜率等于?并证明你的结论。
如图,在直三棱柱中, (1)求证 (2)在上是否存在点使得 (3)在上是否存在点使得?