本题共有2小题,第(1)小题满分6分,第(2)小题满分8分.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元,设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
如图4,已知平面是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线的中点,已知(I))求证:⊥平面;(II)求二面角的余弦值.(Ⅲ)求三棱锥的体积.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为,(>),且不同种产品是否受欢迎相互独立。记为公司向市场投放三种新型产品受欢迎的数量,其分布列为
(I)求该公司至少有一种产品受欢迎的概率;(II)求,的值;(III)求数学期望.
设函数的图象经过点.(I)求的解析式,并求函数的最小正周期和最值;(II)若,其中是面积为的锐角的内角,且,求边和的长.
已知函数f(x)=ax-lnx(a为常数).(Ⅰ)当a=1时,求函数f(x)的最小值;(Ⅱ)求函数f(x)在[1,+∞)上的最值;(Ⅲ)试证明对任意的n∈N﹡都有<1.
如图,已知过点D(0,-2)作抛物线C1:=2py(p>0)的切线l,切点A在第二象限.(Ⅰ)求点A的纵坐标;(Ⅱ)若离心率为的椭圆(a>b>0)恰好经过点A,设直线l交椭圆的另一点为B,记直线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.