如图,已知过点D(0,-2)作抛物线C1:=2py(p>0)的切线l,切点A在第二象限.(Ⅰ)求点A的纵坐标;(Ⅱ)若离心率为的椭圆(a>b>0)恰好经过点A,设直线l交椭圆的另一点为B,记直线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.
张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。(参考数据:) (1)求的解析式; (2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)
如图,在五面体中,四边形是正方形,平面,∥,, ,。 (Ⅰ)求异面直线与所成角的余弦值; (Ⅱ)证明⊥平面; (Ⅲ)求二面角的正切值
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。 (1)求甲中奖且乙、丙都没有中奖的概率; (2)求中奖人数ξ的分布列及数学期望Eξ
已知函数 (1)求函数的最小正周期和图象的对称轴方程 (2)求函数在区间上的值域
已知点和互不相同的点, 满足,其中分别为等差数列和等比数列,O为坐标原点,若为线段AB的中点。 (1)求的值; (2)证明的公差为d =0,或的公比为q=1,点在同一直线上; (3)若d 0,且q 1,点能否在同一直线上?证明你的结论