本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知无穷等比数列公比为,各项的和等于9,数列各项的和为.对给定的,设是首项为,公差为的等差数列.(1)求数列的通项;(2)求数列的前10项之和;(3)设为数列的第项,,求正整数,使得存在且不等于零.
设椭圆过点,且焦点为。 (1)求椭圆的方程; (2)当过点的动直线与椭圆相交与两不同点A、B时,在线段上取点, 满足,证明:点总在某定直线上。
如图,在直角坐标系中,点A(-1,0),B(1,0),P(x,y)()。设与x轴正方向的夹角分别为α、β、γ,若。 (I)求点P的轨迹G的方程; (II)设过点C(0,-1)的直线与轨迹G交于不同两点M、N。问在x轴上是否存在一点,使△MNE为正三角形。若存在求出值;若不存在说明理由。
已知双曲线(a>0,b>0)的右准线一条渐近线交于两点P、Q,F是双曲线的右焦点。 (I)求证:PF⊥; (II)若△PQF为等边三角形,且直线y=x+b交双曲线于A,B两点,且,求双曲线的方程; (III)延长FP交双曲线左准线和左支分别为点M、N,若M为PN的中点,求双曲线的离心率e。
如图所示,O是线段AB的中点,|AB|=2c,以点A为圆心,2a为半径作一圆,其中。 (1)若圆A外的动点P到B的距离等于它到圆周的最短距离,建立适当坐标系,求动点P的轨迹方程,并说明轨迹是何种曲线; (2)经过点O的直线l与直线AB成60°角,当c=2,a=1时,动点P的轨迹记为E,设过点B的直线m交曲线E于M、N两点,且点M在直线AB的上方,求点M到直线l的距离d的取值范围。
已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且 (Ⅰ)当点P在圆上运动时,求点Q的轨迹方程; (Ⅱ)若直线与(Ⅰ)中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求△FOH的面积的取值范围。