本题共有3小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知无穷等比数列公比为,各项的和等于9,数列各项的和为.对给定的,设是首项为,公差为的等差数列.(1)求数列的通项;(2)求数列的前10项之和;(3)设为数列的第项,,求正整数,使得存在且不等于零.
选修4—1:几何问题选讲 如图,已知AB是⊙O的直径,弦CD与AB垂直,垂足为M,E是CD延长线上的一点,且AB=10,CD=8,3DE=4OM,过F点作⊙O的切线EF,BF交CD于G (Ⅰ)求EG的长; (Ⅱ)连接FD,判断FD与AB是否平行,为什么?
选修4—5:不等式选讲 已知关于的不等式对于任意的恒成立 (Ⅰ)求的取值范围; (Ⅱ)在(Ⅰ)的条件下求函数的最小值.
选修4—4:极坐标与参数方程 在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点、的极坐标分别为、,曲线的参数方程为为参数). (Ⅰ)求直线的直角坐标方程; (Ⅱ)若直线和曲线C只有一个交点,求的值.
(本小题满分12分)已知函数,. (Ⅰ)求函数的极值; (Ⅱ)若对有恒成立,求实数的取值范围..
(本小题满分12分)如图,圆与轴相切于点,与轴正半轴相交于两点(点在点的左侧),且. (Ⅰ)求圆的方程; (Ⅱ)过点任作一条直线与椭圆相交于两点,连接,求证:.