如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,AAl=4,BBl=2,CCl=3,且设点O是AB的中点。(1)证明:OC∥平面A1B1C1;(2)求异面直线OC与AlBl所成角的正切值。
如图,△中,,,,在三角形内挖去一个半圆(圆心在边上,半圆与、分别相切于点、,与交于点),将△绕直线旋转一周得到一个旋转体. (1)求该几何体中间一个空心球的表面积的大小; (2)求图中阴影部分绕直线旋转一周所得旋转体的体积.
已知抛物线的准线与轴交于点,过点作圆的两条切线,切点为 (Ⅰ)求抛物线E的方程; (Ⅱ)过抛物线E上的点N作圆C的两条切线,切点分别为若为原点)三点共线,求点N的坐标.
已知函数(),且函数图象过原点. (Ⅰ)求函数的单调区间; (Ⅱ)函数在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由.
如图,在四棱锥P - ABCD中,平面PAD⊥平面ABCD,AB∥DC, △PAD是等边三角形,已知BD ="2AD" =8,AB ="2DC" =. (I)设M是PC上的一点,证明:平面MBD平面PAD; (Ⅱ)求三棱锥C—PAB的体积.
公差不为0的等差数列中,且成等比数列. (I)求的通项公式; (Ⅱ)设试比较与的大小,并说明理由.