某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是 .(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.(用、分别代表两张笑脸,、、分别代表三张哭脸)
如图,点A、D、B、E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.请判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题请给出一个适当的条件使它成为真命题,并加以证明.
先化简,再求值:(-)÷.其中a是x2-2x=0的根.
如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A、D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O).(1)求此抛物线的解析式;(2)过点P作CB所在直线的垂线,垂足为点R;①求证:PF=PR②是否存在点P,使得△PFR为等边三角形;若存在,求出点P的坐标,若不存在,请说明理由.③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为点S,试判断△RSF的形状.
直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段运动,速度为每秒1个单位长度,点沿路线→→运动.(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.