(14’)如图,在平面直角坐标系中,A、B为轴上两点,C、D为轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求的值.
某商店在四个月的试销期内,只销售A,B两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l和图2.(1)第四个月销量占总销量的百分比是_______;(2)在图2中补全表示B品牌电视机月销量的折线图;(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
如图,四边形ABCD是平行四边形,以AB为直径的 ⊙O经过点D,E是⊙O上一点,且ÐAED=45°. (1) 试判断CD与⊙O的位置关系,并证明你的结论; (2) 若⊙O的半径为3,sinÐADE=,求AE的值.
如图,在梯形ABCD中,AD//BC,BD是∠ABC的平分线.(1)求证:AB=AD;(2)若∠ABC=60°,BC=3AB,求∠C的度数
如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点Q的坐标为(0,2).(1)求直线QC的解析式;(2)点P(a,0)在边AB上运动,若过点P、Q的直线将矩形ABCD的周长分成3∶1两部分,求出此时a的值.
列方程或方程组解应用题为了配合学校开展的“爱护地球母亲”主题活动,初三(1)班提出“我骑车我快乐”的口号. “五一”之后小明不用父母开车送,坚持自己骑车上学. 五月底他对自己家的用车情况进行了统计,5月份所走的总路程比4月份的还少100千米,且这两个月共消耗93号汽油260升. 若小明家的汽车平均油耗为0.1升/千米,求他家4、5两月各行驶了多少千米.