本题共有3个小题,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分7分.各项均为正数的数列的前项和为,且对任意正整数,都有.(1)求数列的通项公式;(2)如果等比数列共有项,其首项与公比均为,在数列的每相邻两项与之间插入个后,得到一个新的数列.求数列中所有项的和;(3)如果存在,使不等式成立,求实数的范围.
已知等差数列,公差,前项和为,且满足. (1)求数列的通项公式及前项和; (2)设,若也是等差数列,试确定非零常数,并求数列的前项和.
在四棱锥中,底面为菱形,其中,,为的中点. (1)求证:; (2)若平面平面,且为的中点,求四棱锥的体积.
已知函数,曲线上点处的切线方程为. (1)若在时有极值,求的表达式; (2)在(1)的条件下求在上的最值及相应的的值.
已知函数. (1)求函数的最小正周期; (2)当时,求函数的最大值和最小值.
对于任意的实数 恒成立,记实数M的最大值是m. (Ⅰ)求m的值; (Ⅱ)解不等式.